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POINTS

A point is the simplest of the elementary geometric objects: points, lines, and planes. In
fact we cannot define a point in terms of anything simpler except as a set of numbers.
Points are the basic building blocks for all other geometric objects, and elementary ge-
ometry demonstrates how many figures are defined as a locus of points with certain con-
straining characteristics. For example, in a plane, a circle is the locus of peints equidistant
from a given point, and a straight line is the locus of points equidistant from two given
points. In three-dimensional space, a plane is the locus of points equidistant from two
given points. We can also define more complex curves, surfaces, and solids this way, by
using equations to define the locus of points. This isa powerful way of describing geomet-
ricobjects, because it allows us to analyze and quantify their properties and relationships.
Most importantly to today's technology, points are indispensable when we create com-
puter graphic displays and geometric models. This chapter discusses the definition of a
point as a set of real numbers, point relationships, arrays of points, absolute and relative
points, displaying points, pixels and point resolution, and translating and rotating points.

8.1 Definition

A point suggests the idea of place or location. We define a point by a set of one
or more real numbers, its coordinates. The coordinates of a point not only locate it in a
coordinate system, but also with respect to other points in the system.

A set of n real numbers define a point in n-dimensional space

P == (xlr X2, 00es xﬂ') (8'1)

where x;, x3, ..., X, are the coordinates of p and # is the number of dimensions of the
wordinate system. A boldface, lowercase letter p will denote a point. This is consistent

" with the vector notation of Chapter 1. In fact, under certain conditions there is a one-to-
~ one correspondence between the coordinates of a point and the components of its vector
© representation.

In geometric modeling and computer graphics, most work is in two- or three-

. dimensional space, so we will not usually see Equation 8.1 in this generalized form.
© Note, though, that each coordinate has an identifying number, shown as an attached
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: subscript. This is usually not necessary if the geometry is in two or three dimensions,
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where there are plenty of letters with which to name the coordinates, such as x, y, and z.
In fact, a global or world coordinate system in computer graphics is three-dimensional,
and points in it are given by

p={xy2 82)

However, we often use a subscript to identify a specific point. For example,

P1 = (0, 1, 21) (8.3)

Points are a key part of the definition of a coordinate system, and we can extend
the definition of a point to define a coordinate system. In three dimensions it is the set of
all points defined by the triplet of real numbers (x, v, z), where x, v, z € (400, —oc). From
this we can derive all the other characteristics of the coordinate system. For example,
the origin is the point with x = 0, ¥ = 0, and 2 = 0, or p = (0, 0, 0). The ¥ axis is the set
of points p = (x, 0, 0}, where x € (400, —ox). A rectangular Cartesian coordinate system is
further restricted in that the coordinate axes must be mutually perpendicular and the
same distance scale must be used on all the axes.

A point has no geometric or analytic properties other than place. It has no size,
orientation, length, area, or volume. It has no inside or outside, ner any. other common
geometric characteristics. However, things change when we have two or more points, for
then we can compute and test many interesting properties describing the relationships of
these points to each other. For example, if we are given two points inspace py and p; (Fig-
ure 8.1), we can compute the distance d between them by using the Pythagorean theorem:

d=vx—x02+ (0 — )2+ (22 ~ 21)? {8.4)

Note that the distance d is always a positive real number. We can assign a specific unit
of measurement to the coordinate system: centimeters, meters, light-years, and so on.
The distance is then in terms of this unit of measurement. Although our choice may be
arbitrary, we must be consistent throughout an application.

The coordinates of the midpoint, p,,, between two points are

(8.5)

[t x) ht1e) (1 +2)
e 2 7 22
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Figure 8.1 Two points in space and their midpoint.
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For any point in a set of points we can compute which other point is closest and
which is farthest. We do this by computing and comparing d for each pair of points. If the
absolute distance is not required, then 4% will do just as well, and we avoid a relatively
expensive computation.

Determining the vertices of a minimal rectangular solid, or box, which just
contains all the points of a given set, is another useful computation in geometric model-
ing and computer graphics. This is particularly true when we must test relationships
between two or more sets of points or containment of a point in a given volume of space.
To compute the coordinates of the eight vertices of the box, we find the maximum and
minimum ¥, y, and z coordinates of the point set. We assume that the edges of the box
are parallel to the coordinate axes.

Figure 8:2 is an example of a min-max box enclosing a set of points in the x, y
plane. The points shown have the following coordinates:

Point 1: (—2, 7). This point has the minimum x value, written as Xmun, in the set.
Point 2: (2,9

Point 3: (6, 10). This point has the maximum y value, Ymax-

Point 4: (10, 8). This point has the maximum x value, Xmax-

Peint 5: (3, 5)

Point 6: (-1, O)

Point 7: (3, —3). This point has the minimum y value, ¥min.

Point 8: (8, —1)

8.2 Arrays of Points

When a point is entered into a computer program, its coordinates are stored
in an array. An array is an ordered arrangement of numbers which also may include
an identifying number for each point. Otherwise the position of the coordinates of a
point within the array may be all the “identification” needed. Figure 8.3 shows the
coordinates of six points arranged in a rectangular array of 18 numbers. This is an efficient
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Column 1 Column 2 Column 3
X ¥ vA
Row 1 8.1 2.7 4.0 « Point 1
Row 2 6.9 3.0 ~-6.5 « Point 2
Row 3 5.7 1.1 2.1 <« Point 3
Row 4 0.0 4.2 -1.5 « Point 4
Row 5 11.2 0.8 -3.1 &« Point5
Row 6 -6.6 1.0 -2.9 « Point 6

Figure 8.3 Coordinates of six points arranged in an array.

way to represent and manipulate the coordinates. However, the numbers are not stored
in the computer in “rectangular” configurations, as we shall see. We can present this
information in a more compact form as

[ 81 —27 4.0
69 30 —65

57 11 21

A=1 60 42 _75

112 -08 -3.1
| 66 10 -29]

We can identify an array with a symbol, say A, and use double subscripts to
identify a particular coordinate in the array. For example, if we use A;;, then the subscript
i denotes the row and j denotes the column in which the number A;; appears. So, in the
array above, the value of Ajis —7.5.

Instead of being stored as a rectangular array, coordinates are usually arranged
in a linear sequence, or list, of numbers. There are two ways to form a list of coordinate
values for # points (Figure 8.4). Point-identifying information is often included in these
data arrays, although none is shown here, In Figure 8.4a, the coordinates of each point
are grouped together in sequence. In Figure 8.4b, all the x coordinate valites are listed
first, followed by the y and then z coordinates.

8.3 Absolute and Relative Points

In geometric modeling, or in creating a computer-graphics display, we use two
kinds of points: absolute poinis and relative points. We make this distinction because of
the way we compute the coordinates and the way we plot and display them. We define
absolute points directly by their individual coordinates. For example, a set of absolute
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point coordinates.
points is
Absolute point p; = (x;, ) fori=1,....n (8.6)

We define the coordinates of each relative point with reference to the coordi-
nates of the point preceding it. This is best demonstrated by the following expressior:

Relative point ps = pii + &; forl, ..., n (8.7)

where py is some initial point and where A; = (Ax;, Ay) (Figure 8.5). This sequence may
be generated during numerical analysis or when computing points on lines, curves, or
surfaces.

8.4 Displaying Points

Now we must digress and discuss another geometry problem of contemporary
application, again in computer graphics. A common point-display problem arises when
we must define a window that just encloses a set of points, To do this, we investigate each
point p; in a search for the maximum and minimum x and y values, where Wz = maxx,
Wi = minx, Wy = max y, and Wz = min y, which define the window boundaries.
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In Figure 8.6 there are seven points with coordinates p; = (3.0,15), ;2 =
(2.0,4.0), p2 = (=0.5,0.7), ps = (5.0, 3.0), ps = (=2.5, =1.0), p7 = (~2.0, 2.0). It is easy
to see that max ¥ = x5, minx = x5, max y = ¥, and min y = ¥s. This means that Wg = 7.0,
W, = —2.5, Wr = 4.0, and W = —1.0. We can confirm this‘visua]]y by inspecting the
points in the figure.

An interesting problem may arise when displaying three or more points. It
is not always possible to resolve every point in a set of points to be displayed. Let's
consider, for example, the three points, p1, pz, and ps, in Figure 8.7. For simplicity, we
can arrange them on a common horizontal line so that 11 = 1 = y3. This means that
only the x values determine their separation. If the number of pixels H between p; and
ps is less than the ratio of the separations of p1 and ps to py and ps, then p; and p; will
not be resolved. That is, p1 and pz will not be displayed as two separate and distind
points. This relationship is expressed by the inequality (x3 — x1)/(x> — x1) > Hpixels: ¥
this inequality is true, then p; and p; cannot be resolved, and they will be assigned the
same pixel.

It is also important to know if a given point in the picture plane is inside
or outside the window region of a computer-graphics display. If the coordinates of a
point are x, ¥, then the peint is inside the window if and only if both of the following
inequalities are true:

We<x=Wr and W =y=<Wr (88)

8.5 Translating and Rotating Points

We can move a point from one location to another in two ways: We can transial
it from its current position to a new one, or we can rofate it about some point in the plane
or axis in space to a hew position. A translation is described by making changes relative
to a point’s coordinates (Figure 8.8). These changes are denoted as xr and yr, and the
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translation equations are

X =x4+xr

y=ytyr
where x’ and ' are the coordinates of the new location. Generalizing these equations to
three or more dimensions is straightforward. Now is a good time to review Chapter 3
on transformations.

The simplest rotation of a point in the coordinate plane is about the origin

(Figure 8.9). If we rotate a point p about the otigin and through an angle &, then we

derive the coordinates of the transformed point p’ as follows: we express x" and ¥’ in
terms of ¢ + @ and 7/, thus

(8.9)

x' =r"cos (o +8)

, ) (8.10)
y' =r'sin{x+0)
From elementary trigonometry we have
cos{a 4+ 6) = cosa cos# — sina sinfd
(8.11)

sin(e +#) = sina cosf — cos siné
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cose=>  sine=2 (8.12)
¥ ¥

Because r = r’, with appropriate substitutions of the preceding equations into
Equation 8.10, we find
x' = xcosé — ysing
TRy (8.13)
Yy =xsind + ycosd
This set of equations describes a rotation transformation in the plane about the origin. We
can generalize this description to three dimensions if we change from rotation about the
origin—a point—to rotation about a straight line, an axis of rotation. In fact, Equation 8.13
describes the rotation of a point about the z axis. We define a positive rotation in the plane
as counterclockwise about the origin.

We can just as easily find the coordinates of a point in a new coordinate system -
which shares the same origin as the original system but which is rotated through some
angle, say ¢, with respect to it. Figure 8.10 illustrates the geometry of this transformation,

The coordinates of a point in the new system are
x'=xcos¢ + ysing
¥ = —xsing + ycos¢

Exercises

8.1 Compute the distance between each of the following pairs of points:
a. {(—2.7,6.5,0.8) and (5.1, 5.7, 1.9) d. (~3,0,0)and (7, 0,0)
b. (1,1, 0y and (4,6, —3) e (10,9, —-Dyand (3,8 3
c. (7,—4,2)and (0,2.7, ~0.3)

(8.14) 1

i
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82 Compute the coerdinates of the pointsin Exercise 8.1 relative to acoordinate system
centered at (3, 1, 0) in the original system and parallel to it.

83 Compute the distance between each of the points found for Exercise 8.2.

84 Show that the distance between any pair of points is independent of the coordinate
system chosen.

85 Compute the midpoint between the pairs of points in Exercise 8.1.

86 Given an arbitrary set of points, find the coordinates of the vertices of a rectangular
box that just encloses it.

87 Find the coordinates of the eight vertices of a rectangular box that just encloses the
ten points given in Exercise 8.1.

88 Given that A; is a constant for all p;, that is, A; = (Ax;, Ay;) = (Ax, Ay), find py in
terms of pp and A;.

89 Find the set of A;s for the vertex points of a square whose sides are three units long
and with py = (1, 0). Assume that the sides of the square are parallel to the x, ¥
coordinate axes, and proceed counterclockwise.

8.10 Repeat Exercise 8.9 for a square whose sides are four units long and with py =
(-2, =2).

8.11 Repeat Exercise 8.10 for py = (1, —4).

812 Given Wi = 14, W, = =2, Wp = 8, and Wy = —4, determine which of the following
points are inside this computer-graphics display window:

a p={(154 d ps=(-2,8
b. p2 = (3,10)° e. ps = (10, 10)
¢. pa=1(14,2)

8.13 Find the coordinates of the corners of the window defined in Exercise 8.12.

8,14 State a mathematical test to determine if a point is contained in a rectangular volume
in space, whose sides are parallel to the principal planes.

8.15 Derive the equations that describe the resultant transformation of a point that is
first translated by x7, yr and then rotated by 6.

* 8.16 Derive the equations that describe the resultant transformations of a point that is
first rotated by 8 and then translated by xr, yr.

. 817 Compate and comment on the results of Exercises 8.15 and 8.16.



